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Our projects

* Topological data analysis of big spatio-temporal urban data
 Weather and the impact on high street retalil

 Comparing socio-economic characteristics to the built environment
using high resolution aerial imagery

* Neighbourhood trajectories in the UK
* Sensing dynamic retail environments
* Neighborhood trajectories from planning data
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Modules



Compulsory Modules

* Social Survey Analysis
* Descriptive statistics
* Inferential statistics
e Correlation and regression

* Qualitative Research Methods
* Research design
* Various qualitative methodologies e.g. ethnography, interviews
* Thematic coding



Geographic Data Science

Deprivation in Manchester

* Visualisation
* Choropleth mapping
* Spatial weighting

* Clustering




Big Data Analysis

* Probabilistic modelling

 Scalable algorithms

* Real-world applications of batch analytics
* Sequential Bayesian Inference

e Streaming analytics

o SEATKS




Computational Intelligence

e Structure and learning processes of neural networks
* Different types of neural networks
* Genetic algorithms
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Spatial Analysis

* Random intercept and random slope multilevel modelling

 Spatial autocorrelation
* Geographically weighted regression

 Spatial interpolation, regression and flows estimation
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Spatial Analysis

* Random intercept and random slope multilevel modelling
* Spatial autocorrelation

* Geographically weighted regression

 Spatial interpolation, regression and flows estimation

Local | Cluster Map for Unemployment
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Spatial Analysis

* Random intercept and random slope multilevel modelling
 Spatial autocorrelation

* Geographically weighted regression

» Spatial interpolation, regression and flows estimation
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Internships



Exploring the weather dependency of different
product categories

Aim O1: Random forest regression models O2: Partial dependence plots for
skincare products and sun preps
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Investigating the spatial and temporal trends in

footfall data

* Visualization techniques and k-means clustering were
used to develop understanding of the patterns within
footfall.
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Topological data analysis of workplace area
characteristics data
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Red Ninja — Viability of LiFE 1.0
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Exploratory image analysis

Aim

One of the recent research interests of
Ordnance Survey is to test methods for
automatically finding windows (and doors)
within facade imagery.

Key gquestion: A representative sample of the
windows is required (and doorsf) to be used as
templates in order to perform further analysis
(i.e. identify different styles)

Tasks:

* Process images through a neural network
and produce txt file outputs by
layer/image/filter

* Write code for clustering the layer file
outputs

* Find optimal K for clustering
* Source central images to each cluster

* Manually check their viability to be used as
templates for next method

* Dimensionality reduction to be used for
visualisation

Dimensionality reduction

 t-Distributed Stochastic Neighbour Embedding (t-SNE)
method applied to reduce dimensions from (25-2000) to 2 (X
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Classification of aerial images using features
extracted from a neural network

Related to Ordnance Survey ImagelLearn project - investigating the
potential of machine learning to reduce manual survey costs and
enhance data products

Extracted features from images at various layers of a neural network
and trained a Support Vector Machine to classify as inland water or
not

Examined the classification accuracy for each layer of the network
and each set of weights




PhD life

* Weekly lab meetings
 Monthly supervisor meetings
* Demonstrating undergraduate modules

* Training courses
* Secure data training
* R for spatial analysis
* Tableau

* Events/Conferences
 Liverpool School of Environmental Sciences PGR conference
e Ordnance Survey PhD conference and neural network hack
* Data science conferences
* Summer schools



