Liverpool CDT Cohort

Melanie Green, Natalie Rose, Krasen Samardzhiev, Celine Chalupa, Nikos Patias, Susie Philp

CDT Data Analytics and Society Workshop 18th September 2018

Geographic Data Science Lab Department of Geography and Planning University of Liverpool

Data Analytics & Society

Our projects

- Topological data analysis of big spatio-temporal urban data
- Weather and the impact on high street retail
- Comparing socio-economic characteristics to the built environment using high resolution aerial imagery
- Neighbourhood trajectories in the UK
- Sensing dynamic retail environments
- Neighborhood trajectories from planning data

Providing construction intelligence to UK businesses

Modules

Compulsory Modules

- Social Survey Analysis
 - Descriptive statistics
 - Inferential statistics
 - Correlation and regression
- Qualitative Research Methods
 - Research design
 - Various qualitative methodologies e.g. ethnography, interviews
 - Thematic coding

Geographic Data Science

Deprivation in Manchester

- Visualisation
- Choropleth mapping
- Spatial weighting
- Clustering

Big Data Analysis

- Probabilistic modelling
- Scalable algorithms
- Real-world applications of batch analytics
- Sequential Bayesian Inference
- Streaming analytics

Computational Intelligence

- Structure and learning processes of neural networks
- Different types of neural networks
- Genetic algorithms

Spatial Analysis

- Random intercept and random slope multilevel modelling
- Spatial autocorrelation
- Geographically weighted regression
- Spatial interpolation, regression and flows estimation

Random intercept

Random slope

Spatial Analysis

- Random intercept and random slope multilevel modelling
- Spatial autocorrelation
- Geographically weighted regression
- Spatial interpolation, regression and flows estimation

Local I Cluster Map for Unemployment

Spatial Analysis

- Random intercept and random slope multilevel modelling
- Spatial autocorrelation
- Geographically weighted regression
- Spatial interpolation, regression and flows estimation

Predictive check - Model 3

Internships

Exploring the weather dependency of different product categories

Aim

To determine what product categories are weather dependent and explore the nature of the relationships they present

Objectives

- 1) Identify the product category sales that are most dependent on each weather condition
- Determine the nature of 2) these relationships

Data

Daily sales data: in-store and online

Store characteristics

Daily weather data at store level

O1: Random forest regression models

For (i in 1:48) {

set.seed(1) results[[i]] <- ranger(categories[,i] - MAX_TEMP</pre> STORE_NUMBER + STORE_TOWN + STORE_COUNTY + TYPE_OF_STORE_DESCRIPTION + day_of_week + day_of_year, data = store_purchases.2, importance="impurity") #print(i)

list_max[i] <- results[[i]]\$r.squared

O2: Partial dependence plots for skincare products and sun preps

Investigating the spatial and temporal trends in footfall data

 Visualization techniques and k-means clustering were used to develop understanding of the patterns within footfall.

Topological data analysis of workplace area characteristics data

<matplotlib.collections.CircleCollection at 0x7ff27c072518>)

Red Ninja – Viability of LiFE 1.0

- North West Ambulance Services & Liverpool's traffic control center
- Improve ambulance response times
- Solution: Al Algorithm
 - Real time city congestion data
 - Ambulance location data
- Junction Types Up to 40% reduction in journey times

Research on Ambulance accidents & response times

Ambulance Quality Indicators (NHS)

Availability of data sets

• Found ambulance crashes through attributes

Predicting accident severity in Ambulance crashes Possible predictors:

- Junction type
- Road conditions (wet, dry, ...)
- Light Conditions
- Urban vs. Rural area

Develop similar application for freight transport Save on time, fuel cost & cut down emissions

Map based on Longitude and Latitude. Color shows details about Junction Control. The data is filtered on Action (Ambulance, Junction Control), which keeps 10 members.

Exploratory image analysis

Aim

One of the recent research interests of Ordnance Survey is to test methods for automatically finding windows (and doors) within façade imagery.

<u>Key question</u>: A representative sample of the windows is required (and doors) to be used as templates in order to perform further analysis (i.e. identify different styles)

<u>Tasks</u>:

- Process images through a neural network and produce txt file outputs by layer/image/filter
- Write code for clustering the layer file outputs
- Find optimal K for clustering
- Source central images to each cluster
- Manually check their viability to be used as templates for next method
- Dimensionality reduction to be used for visualisation

Dimensionality reduction

 t-Distributed Stochastic Neighbour Embedding (t-SNE) method applied to reduce dimensions from (25-2000) to 2 (X and Y)

Deeper layer of neural network output

Classification of aerial images using features extracted from a neural network

- Related to Ordnance Survey ImageLearn project investigating the \bullet potential of machine learning to reduce manual survey costs and enhance data products
- Extracted features from images at various layers of a neural network \bullet and trained a Support Vector Machine to classify as inland water or not
- Examined the classification accuracy for each layer of the network \bullet and each set of weights

trained

Layer 94, ImageNet

Layer 104, scratch

Layer 94, fine-tuned

PhD life

- Weekly lab meetings
- Monthly supervisor meetings
- Demonstrating undergraduate modules
- Training courses
 - Secure data training
 - R for spatial analysis
 - Tableau
- Events/Conferences
 - Liverpool School of Environmental Sciences PGR conference
 - Ordnance Survey PhD conference and neural network hack
 - Data science conferences
 - Summer schools